
hVHDL
Release 0.1

johonkanen

Oct 02, 2023

ABOUT

1 What is hVHDL 3

2 Usage 5
2.1 Using the sources in your project . 5

3 Module Repository Structure 7

4 example project of high level vhdl 9
4.1 Example Project . 9
4.2 Noisy sine generation . 11
4.3 Filter interface . 12
4.4 Floating point filter implementation . 13
4.5 Fixed point filter implementation . 15
4.6 Filtering results . 16
4.7 Synthesis results . 20

5 Fixed point math 25
5.1 Multiplier . 25
5.2 Divider . 26
5.3 Sine and Cosine . 27
5.4 synchronous coordinate transforms . 28

6 floating point math 29
6.1 Adder/subtractor . 29

7 FPGA Memory 31

8 FPGA interconnect 33

9 Dynamic verification module 35

10 Gigabit ethernet 37

11 Uart 39

12 Create High Level Interfaces in VHDL 41
12.1 Records as abstract data types in VHDL . 41
12.2 Subroutines . 41
12.3 Using a simple interface . 42

13 Using libraries and packages to abstract VHDL 43
13.1 The specialty of use work.package . 43

i

14 Automatic code timing with handshake interfaces 45
14.1 Backpressure instead of timing . 45
14.2 Adding backpressure to sequential / blocking function . 45
14.3 Adding backpressure to pipelined function . 45
14.4 Adding ability to do backpressure to a IP module . 46

15 Real numbers in synthesizable VHDL 47
15.1 Real numbers as a form of abstract interfaces . 47

16 High Level Coding Patterns in synthesizable VHDL 49
16.1 Creating callable object with records and subroutines . 49
16.2 Creating objects from objects . 49
16.3 Simple state machines . 49

17 Reusing VHDL source code 51
17.1 Packages . 51

18 Sharing hardware resources 53
18.1 Sharing hw resouces inside a procedure . 53
18.2 Sharing hardware accross processes with a bus pattern . 53

19 Solving differential equations on FPGA 55
19.1 Numerical integration . 55

ii

hVHDL, Release 0.1

Note: This project is under active development.

Listing 1: High level code example

if ethernet_rx_is_active(ethernet_rx_ddio_data_out) then
capture_ethernet_frame(ethernet_rx, ethernet_rx_ddio_data_out);

end if;

hVHDL is a set of coding patterns for standard VHDL that are designed manage complexity of digital system design
in VHDL. Complexity is managed by dividing large systems into small individual pieces that can be designed, tested
and updated in isolation from each other. The coding patterns allow us to support incremental design, testing and
development of the VHDL source code and to increase the level of abstraction. All code has been tested with an FPGA
using Xilinx Vivado, ISE, Intel Quartus or Efinix Efinity tools and simulated with GHDL.

https://github.com/hVHDL

ABOUT 1

https://github.com/hVHDL

hVHDL, Release 0.1

2 ABOUT

CHAPTER

ONE

WHAT IS HVHDL

hVHDL is a set of coding patterns for standard VHDL that are designed manage complexity of digital system design
in VHDL. Complexity is managed by dividing large systems into small individual pieces that can be designed, tested
and updated in isolation from each other. The coding patterns allow us to support incremental design, testing and
development of the VHDL source code and to increase the level of abstraction. All code has been tested with an FPGA
using Xilinx Vivado, Lattice Diamond„ Intel Quartus or Efinix Efinity tools and simulated with GHDL.

3

hVHDL, Release 0.1

4 Chapter 1. What is hVHDL

CHAPTER

TWO

USAGE

The repositories are developed as independently as possible as long as there is no need to repeat code. To add a
repository to your project just add them as a submodule. For example adding the fixed point math library as submodule
into your project though console

git submodule add -b main https://github.com/hVHDL/hVHDL_math_library.git --init --
→˓remote --recursive

After this you can run the VUnit script to run all testbenches found in the module and save the simulations into gtkwave
wave format using

python vunit_run.py -p 8 --gtkwave-fmt ghw

2.1 Using the sources in your project

After the module is added to your project, you need to add the sources you need into your project and optionally
specify to which VHDL library the sources are added. All references to packages in the repositories are made without
specifying the library using work.package.all so there is no need to have a special library for the code.

5

hVHDL, Release 0.1

6 Chapter 2. Usage

CHAPTER

THREE

MODULE REPOSITORY STRUCTURE

Repository structure with the modules follow the following pattern. The interfaces through which the modules are used
will be in interface/ folder. This folder has test benches with functional tests for the interfaces. These interface tests are
the specification for the behavior of the interfaces. The tests are very vague and lacking details by design as we want to
have the possibility for changing any part of the code behind the interfaces. These tests are the only ones that are not
ment to changed.

Since all modules are ment to be used as submodules, these interface tests allow us to use any version of the code as
long as we use the code through these interfaces. These interfaces also allow us to develop the code in the submodules
independently of the application code where they are used. This separation of module from the application is very
important to allow code being reused and still retain the ability to modify it.

In VHDL abstract interfaces are created using functions and procedures as well as a record. In order to change the
specifics of the code we can use records in records. The way we introduce modifiability to the insides of these records
and subroutines we use packages and libraries. These are further explained in the page about Create High Level Inter-
faces in VHDL.

7

hVHDL, Release 0.1

8 Chapter 3. Module Repository Structure

CHAPTER

FOUR

EXAMPLE PROJECT OF HIGH LEVEL VHDL

There is an example project that includes build scripts for building the project using Efinix Efinity, Lattice Diamond,
Intel Quartus and Xilinx Vivado. The example project is tested with FPGA. The build scripts allow a single command
to build the project with any of the tools.

The example project uses uart, multiplier, floating point math and the internal bus. The design creates a noisy sine
wave and a fixed and a floating point filters to clean the noise from the the sine. The sine, noise, and fixed and floating
point filtered versions of the noisy sine are then connected to an internal bus. The bus is connected to an uart which
allows communication between the FPGA and a PC. The communication allows streaming the register pointed by a
number that is obtained from the UART, thus any register connected to the bus is readable from the uart with a PC.

See the example project here : https://github.com/hVHDL/hVHDL_example_project

4.1 Example Project

The project top module is called ‘top’. Intel, Lattice and Xilinx tools use similar top files that instantiate the main clocks
and connects signals from project into the physical IO signals in the top file. With Efinix tools the PLL is managed
by the build system, thus Efinix tools manage this PLL layer of the design. The efinix_top.vhd file is common for all
builds which reduces the need to manage multiple different versions of the project main IO routing layer.

Listing 1: Diamond, Quartus and Vivado top file

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;

entity top is
port (

clk : in std_logic ;
uart_rx : in std_logic ;
uart_tx : out std_logic

);
end entity top;

architecture rtl of top is

--
component main_clock is

port (
CLKI: in std_logic;

(continues on next page)

9

https://github.com/hVHDL/hVHDL_example_project

hVHDL, Release 0.1

(continued from previous page)

CLKOP: out std_logic);
end component;

--

signal clock_120mhz : std_logic := '0';

--
begin

--
u_main_clocks : main_clock
port map(clk, clock_120mhz);

--
u_hvhdl_example : entity work.efinix_top
port map(

clock_120mhz => clock_120mhz,
uart_rx => uart_rx,
uart_tx => uart_tx);

--
end rtl;

The efinix top module instantiates the main system interconnect module which instantiates the main design modules
and connects them together . The first interesting design feature is visible in the IO names of the routed uart IO signal.
The reason for the long names of the uart sources is that the IO are routed through the design using records. The use
of records allows syntax checking to catch signal routing bugs in the design. If we change a module with IO, then the
syntax checking will see that the name of the module is changed and flags an error if we did not remember to change
the signals accordingly.

Listing 2: Efinix top

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity efinix_top is
port (

clock_120mhz : in std_logic;
uart_rx : in std_logic;
uart_tx : out std_logic

);
end entity efinix_top;

architecture rtl of efinix_top is

begin

--
u_hvhdl_example : entity work.hvhdl_example_interconnect
port map(

system_clock => clock_120mhz,
hvhdl_example_interconnect_FPGA_in.communications_FPGA_in.uart_FPGA_in.uart_

(continues on next page)

10 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

(continued from previous page)

→˓transreceiver_FPGA_in.uart_rx_fpga_in.uart_rx => uart_rx,
hvhdl_example_interconnect_FPGA_out.communications_FPGA_out.uart_FPGA_out.uart_

→˓transreceiver_FPGA_out.uart_tx_fpga_out.uart_tx => uart_tx);

end rtl;

4.2 Noisy sine generation

The High level coding patterns are visible in the sine generation. The process that creates a sine, noise and 100kHz
time level for the signal and filtering is shown below. In the process we create a multiplier, a sincos module that
calculates both sine and cosine of an angle and initialize the internal bus node as well as the fixed and floating point
filter modules. The full source code can be found here https://github.com/hVHDL/hVHDL_example_project/blob/
main/source/hvhdl_example_interconnect/hvhdl_example_interconnect_pkg.vhd

The process creates as down counter, that counts from 1199 to zero. This corresponds to 100kHz time level at 120MHz
system clock. When the counter is zero, the sine calculation is requested and both noise and angle are updated. When
sine calculation is ready as indicated by the sincos_is_ready function call returning true, the fixed and floating point
filters are requested.

Listing 3: sine and timelevel generation

create_noisy_sine : process(system_clock)
begin

if rising_edge(system_clock) then
create_multiplier(multiplier);
create_sincos(multiplier , sincos);

init_example_filter(floating_point_filter_in);
init_example_filter(fixed_point_filter_in);

init_bus(bus_from_interconnect);
connect_read_only_data_to_address(bus_from_master, bus_from_interconnect, 100,␣

→˓get_sine(sincos)/2 + 32768);
connect_read_only_data_to_address(bus_from_master, bus_from_interconnect, 101,␣

→˓angle);
connect_read_only_data_to_address(bus_from_master, bus_from_interconnect, 102,␣

→˓to_integer(signed(prbs7))+32768);
connect_read_only_data_to_address(bus_from_master, bus_from_interconnect, 103,␣

→˓sine_with_noise/2 + 32768);

if i > 0 then
i <= (i - 1);

else
i <= 1199;

end if;

if i = 0 then
request_sincos(sincos, angle);
angle <= (angle + 10) mod 2**16;
prbs7 <= prbs7(5 downto 0) & prbs7(6);
prbs7(6) <= prbs7(5) xor prbs7(0);

(continues on next page)

4.2. Noisy sine generation 11

https://github.com/hVHDL/hVHDL_example_project/blob/main/source/hvhdl_example_interconnect/hvhdl_example_interconnect_pkg.vhd
https://github.com/hVHDL/hVHDL_example_project/blob/main/source/hvhdl_example_interconnect/hvhdl_example_interconnect_pkg.vhd

hVHDL, Release 0.1

(continued from previous page)

end if;

if sincos_is_ready(sincos) then
sine_with_noise <= get_sine(sincos) + to_integer(signed(prbs7)*64);
request_example_filter(floating_point_filter_in, sine_with_noise);
request_example_filter(fixed_point_filter_in, sine_with_noise);

end if;

end if; --rising_edge
end process testi;

u_floating_point_filter : entity work.example_filter_entity(float)

generic map(filter_time_constant => filter_time_constant)
port map(system_clock, floating_point_filter_in, bus_from_master, bus_from_

→˓floating_point_filter);

u_fixed_point_filter : entity work.example_filter_entity(fixed_point)

generic map(filter_time_constant => filter_time_constant)
port map(system_clock, fixed_point_filter_in, bus_from_master, bus_from_fixed_

→˓point_filter);

--
--

Sine, noise, angle and noisy sine are all connected to the internal bus. This is done with a procedure call to con-
nect_read_only_data_to_address. The arguments are the in and out directional bus, address to which the data is read-
able from and then the data which is connected to the bus. The bus is made to be 16 bit wide, making that the numbers
are between 0 and 65535, thus 32768 is added to the signals in order to fit negative numbers into the 16 bit number
range.

4.3 Filter interface

The filters have a common entity. Since both the fixed and floating point filter take in the noisy sine and then connect the
filtered sine into the internal bus, we use a common source file for both. The example_filter_entity.vhd has a package that
defines a record and two interface subroutines. These subroutines are init_filter_example and request_filter_example,
which allows an abstract interface to the module. With the use of this record, the module which uses the filter does not
need to have accurate description on how the filterin is actually used. This allows also changing the interface if this is
needed.

Listing 4: filter interface functions and entity description

package example_filter_entity_pkg is

type example_filter_input_record is record
filter_is_requested : boolean;
filter_input : integer;

end record;

constant init_example_filter_input : example_filter_input_record := (false, 0);
(continues on next page)

12 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

(continued from previous page)

--
procedure init_example_filter (

signal example_filter_input : out example_filter_input_record);

--
procedure request_example_filter (

signal example_filter_input : out example_filter_input_record;
data : in integer);

--
end package example_filter_entity_pkg;

--
--
library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.fpga_interconnect_pkg.all;

use work.example_filter_entity_pkg.all;

entity example_filter_entity is
generic(filter_time_constant : real);
port (

clock : in std_logic;
example_filter_input : in example_filter_input_record;
bus_in : in fpga_interconnect_record;
bus_out : out fpga_interconnect_record

);
end entity example_filter_entity;

4.4 Floating point filter implementation

The actual filter implementation is in the two alternate architectures of the filter interface. Since the noisy sine is
calculated using fixed point, the floating point filter first transforms the integer to floating point number, then filters the
signal and then transforms the result back to fixed point and lastly connects the result to the internal bus.

The floating point module is accessed with call to the create_float_alu, create_denormalizer and create normalizer
procedures with assciated signals as arguments. The float alu implements floating point add and subtract functions and
a floating point multiplier. The created normalizer and denormalizer are used for transforming between integer and
floating point numbers. The actual filter calculation calculates a first order filter using y <= y + (u-y) * filter_gain.

Listing 5: floating point filter implementation

floating_point_filter : process(clock)
begin

if rising_edge(clock) then
init_bus(bus_out);
connect_read_only_data_to_address(bus_in, bus_out, 106, get_mantissa(get_

→˓filter_output(float_filter)));
(continues on next page)

4.4. Floating point filter implementation 13

hVHDL, Release 0.1

(continued from previous page)

connect_read_only_data_to_address(bus_in, bus_out, 107, get_exponent(get_
→˓filter_output(float_filter)));

connect_read_only_data_to_address(bus_in, bus_out, 108, get_
→˓integer(denormalizer) + 32768);

create_float_alu(float_alu);
create_denormalizer(denormalizer);
create_normalizer(normalizer);

if example_filter_input.filter_is_requested then
to_float(normalizer, example_filter_input.filter_input, 15);

end if;

if normalizer_is_ready(normalizer) then
request_float_filter(float_filter, get_normalizer_result(normalizer));

end if;

request_scaling(denormalizer, get_filter_output(float_filter), 14);

--
filter_is_ready <= false;
CASE filter_counter is

WHEN 0 =>
subtract(float_alu, u, y);
filter_counter <= filter_counter + 1;

WHEN 1 =>
if add_is_ready(float_alu) then

multiply(float_alu , get_add_result(float_alu) , filter_gain);
filter_counter <= filter_counter + 1;

end if;

WHEN 2 =>
if multiplier_is_ready(float_alu) then

add(float_alu, get_multiplier_result(float_alu), y);
filter_counter <= filter_counter + 1;

end if;
WHEN 3 =>

if add_is_ready(float_alu) then
y <= get_add_result(float_alu);
filter_counter <= filter_counter + 1;
filter_is_ready <= true;

end if;
WHEN others => -- wait for start

end CASE;
--

end if; --rising_edge
end process floating_point_filter;

14 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

4.5 Fixed point filter implementation

The fixed point filter is similarly implemented in its own architecture. The fixed point filter process similarly to the
floating point implementation creates a fixed point filter. The filter needs a multiplier and the actual filter record type
signal. The create_first_order_filter procedure call creates the state machines that are needed for the fixed point filter
calculation. The implementation of the fixed point filter can be found in the math library https://github.com/hVHDL/
hVHDL_math_library/blob/main/first_order_filter/first_order_filter_pkg.vhd

The fixed point filter uses a slightly different implementation of the filter than the floating point one, but resulting
response is the same.

Listing 6: fixed point filter implementation

fixed_point_filter : process(clock)
begin

if rising_edge(clock) then
init_bus(bus_out);
connect_read_only_data_to_address(bus_in, bus_out, 104, get_filter_

→˓output(filter)/2 + 32678);
connect_read_only_data_to_address(bus_in, bus_out, 105, scaled_sine/2 + 32678);
create_multiplier(multiplier2);
create_first_order_filter(filter => filter , multiplier => multiplier2 , time_

→˓constant => filter_time_constant);

if example_filter_input.filter_is_requested then
filter_data(filter, example_filter_input.filter_input);
process_counter <= 0;

end if;

CASE process_counter is
WHEN 0 =>

if filter_is_ready(filter) then
multiply(multiplier2, get_filter_output(filter), integer(32768.0*3.

→˓3942));
process_counter <= process_counter + 1;

end if;
WHEN 1 =>

if multiplier_is_ready(multiplier2) then
scaled_sine <= get_multiplier_result(multiplier2, 15);
process_counter <= process_counter + 1;

end if;
WHEN others => -- wait for start

end CASE;

end if; --rising_edge
end process;

4.5. Fixed point filter implementation 15

https://github.com/hVHDL/hVHDL_math_library/blob/main/first_order_filter/first_order_filter_pkg.vhd
https://github.com/hVHDL/hVHDL_math_library/blob/main/first_order_filter/first_order_filter_pkg.vhd

hVHDL, Release 0.1

4.6 Filtering results

The signals are captured using uart and plotted into figures with matlab. The original sine, noise and combined noisy
sine are shown below

16 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

4.6. Filtering results 17

hVHDL, Release 0.1

Since the fixed and floating point implmentations of the filters have the same response, the filtering results are also
almost identical.

The difference between fixed and floating point can be seen in the zoomed in figures shown below. The fixed point
figure is first

18 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

4.6. Filtering results 19

hVHDL, Release 0.1

4.7 Synthesis results

The synthesis results are shown in figure below the ecp, efinix and intel resource use including both luts and multipliers
are quite similar due to 4 input lookup tables. Spartan 7 has six input luts and the compiler manages to use a lot of the
6 input luts, thus the resource use is somewhat smaller. All of the designs meet timing at 120MHz.

20 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

4.7. Synthesis results 21

hVHDL, Release 0.1

22 Chapter 4. example project of high level vhdl

hVHDL, Release 0.1

4.7. Synthesis results 23

hVHDL, Release 0.1

24 Chapter 4. example project of high level vhdl

CHAPTER

FIVE

FIXED POINT MATH

Fixed point math library allows high level access to basic mathematical functions. These include Multiplier, divider,
sine and cosine, abc to dq and dq to abc transforms, PI controller and a first order filter. When we talk about fixed point
we refer to arithmetic done using integers. Note that this applies to both fixed point and floating point arithmetic.

The modules are found at https://github.com/hVHDL/hVHDL_math_library

5.1 Multiplier

To add multiplier into your design you need to include the multiplier package and a word length configuration in the
same library. The configuration package allows changing the required word lengths as well as number of pipeline cycles
if needed. There are ready made configuration packages for 18x18, 22x22 and 26x26 bit multipliers.

The shift and rounding logic is in the get_multiplier_result function.

Listing 1: example of using a single multiplier for several multiplications

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.multiplier_pkg.all;

entity test is
port (clock : in std_logic);

end entity test;

architecture rtl of test is

signal multiplier : multiplier_record := init_multiplier;

signal counter : integer := 0;
signal multiplier_result : integer := 0;

begin

process(clock)
begin

if rising_edge(clock) then
counter <= (counter + 1) mod 2**15;
create_multiplier(multiplier);

(continues on next page)

25

https://github.com/hVHDL/hVHDL_math_library

hVHDL, Release 0.1

(continued from previous page)

multiply(multiplier, counter, counter);
if multiplier_is_ready(multiplier);

multiplier_result <= get_multiplier_result(multiplier, 15);
end if;

end if; --rising_edge
end process;

end rtl;

5.2 Divider

In addition to the sources in the division folder, divider also requires a multiplier. The divider is based on inverting
the divider and then multiplying the result. The divider has a range reduction function which allows the inverting and
resulting multiplication to work with numbers in [0.5, 1] range. A more thorough explanation of the divider is given
in https://hardwaredescriptions.com/conquer-the-divide/

Listing 2: example of using divider

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.multiplier_pkg.all;
use work.divider_pkg.all;

entity test is
port (clock : in std_logic);

end entity test;

architecture rtl of test is

signal multiplier : multiplier_record := init_multiplier;
signal divider : divider := init_divider;

signal counter : integer := 0;
signal divider_result : integer := 0;

begin

process(clock)
begin

if rising_edge(clock) then
counter <= (counter + 1) mod 2**15;
create_multiplier(multiplier);
create_multiplier(divider);

if division_is_not_busy(divider) then
request_division(divider, counter, counter);

end if;
(continues on next page)

26 Chapter 5. Fixed point math

https://hardwaredescriptions.com/conquer-the-divide/

hVHDL, Release 0.1

(continued from previous page)

multiply(multiplier, counter, counter);
if division_is_ready(multiplier, divider) then

divider_result <= get_division_result(multiplier, divider, 15);
end if;

end if; --rising_edge
end process;

end rtl;

5.3 Sine and Cosine

Sine and cosine functions are calculated using polynomial approximation. We calculate both of them in at the same
time, since the multiplication has pipeline stages, the cosine polynomial is evaluated in the pipeline stages of the sine
polynomial and this allows us to save a blocking multiplier stage. Because of this, we get both at the same time.

Listing 3: example of using sine and cosine

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.multiplier_pkg.all;
use work.sincos_pkg.all;

entity test is
port (clock : in std_logic);

end entity test;

architecture rtl of test is

signal multiplier : multiplier_record := init_multiplier;
signal sincos : sincos_record := init_sincos;

signal counter : integer := 0;
signal sine : integer := 0;
signal cosine : integer := 0;

begin

process(clock)
begin

if rising_edge(clock) then
counter <= (counter + 1) mod 2**15;
create_multiplier(multiplier);
create_sincos(sincos);

request_sincos(sincos, counter*64 mod 2**16);

if sincos_is_ready(sincos);
(continues on next page)

5.3. Sine and Cosine 27

hVHDL, Release 0.1

(continued from previous page)

sine <= get_sine(sincos);
cosine <= get_sine(sincos);

end if;

end if; --rising_edge
end process;

end rtl;

5.4 synchronous coordinate transforms

28 Chapter 5. Fixed point math

CHAPTER

SIX

FLOATING POINT MATH

Floating point math library has pipelined versions of multiplier and summation/subtraction modules that allow high
level interface to basic floating point operations

https://github.com/hVHDL/hVHDL_floating_point

The floating point module is configured using packages and libraries. There is also a blog post on the alu found at

https://hardwaredescriptions.com/high-level-floating-point-alu-in-synthesizable-vhdl/ Multiplier ———-

6.1 Adder/subtractor

29

https://github.com/hVHDL/hVHDL_floating_point
https://hardwaredescriptions.com/high-level-floating-point-alu-in-synthesizable-vhdl/

hVHDL, Release 0.1

30 Chapter 6. floating point math

CHAPTER

SEVEN

FPGA MEMORY

High level interface for rom and ram modules

https://github.com/hVHDL/hVHDL_memory_library

31

https://github.com/hVHDL/hVHDL_memory_library

hVHDL, Release 0.1

32 Chapter 7. FPGA Memory

CHAPTER

EIGHT

FPGA INTERCONNECT

High level bus for inter process communication inside fpga.

https://github.com/hVHDL/hVHDL_fpga_interconnect

33

https://github.com/hVHDL/hVHDL_fpga_interconnect

hVHDL, Release 0.1

34 Chapter 8. FPGA interconnect

CHAPTER

NINE

DYNAMIC VERIFICATION MODULE

Dynamic verification libraries for power electronic converters and motor control

https://github.com/hVHDL/hVHDL_dynamic_model_verification_library

35

https://github.com/hVHDL/hVHDL_dynamic_model_verification_library

hVHDL, Release 0.1

36 Chapter 9. Dynamic verification module

CHAPTER

TEN

GIGABIT ETHERNET

Gigabit ethernet module using RGMII interface

https://github.com/hVHDL/hVHDL_gigabit_ethernet

37

https://github.com/hVHDL/hVHDL_gigabit_ethernet

hVHDL, Release 0.1

38 Chapter 10. Gigabit ethernet

CHAPTER

ELEVEN

UART

Uart with simple interface. Tested with various fpgas.

https://github.com/hVHDL/hVHDL_uart

39

https://github.com/hVHDL/hVHDL_uart

hVHDL, Release 0.1

40 Chapter 11. Uart

CHAPTER

TWELVE

CREATE HIGH LEVEL INTERFACES IN VHDL

The interfaces are designed to greatly increase abstraction level of VHDL source code. The key idea behind the patterns
are 1) all code should be shareable 2) all code should be changeable when needed. To accomplish these two almost
opposite ideas we have designed specific patterns for coding - all functionality should be behind abstract interfaces -
all code modules should have the possibility to exert backpressure - there should be no need to time code - Use any IP
from any vendor, add abstract interface if not already given by vendor

The main property of an interface is to create a well defined methods for accessing some functionality. The reason
for having this interface is that the code behind the interface is indirectly used. This allows the code to be changed
and modified without the changes being propagated to the application. This also allows sharing code accross multiple
projects.

We can create an interface to either an IP component, that is an entity with a port as well as a set of functionality by
using record as a minimal entity that is then used inside a process.

In VHDL records define the abstract data types and functions and procedures then define the way these data types are
interacted with.

12.1 Records as abstract data types in VHDL

The main abstract data type in VHDL is called a record. Records are aggregates of any other types. Thus they can be
made from anything you can make a signal from. This includes all types like arrays of records.

This record object is then added to a project by simply adding a signal of this record type. Since the entire func-
tionality of a multiplier is encapsulated in this one signal of record type, we only need to instantiate a signal of this
multiplier_record type.

12.2 Subroutines

The magic happens when we use inout as the access type to the signal that is input to the module. With the inout
declaration, we can put any multi cycle logic into a record.

41

hVHDL, Release 0.1

12.3 Using a simple interface

The way we use these high level objects is through the subroutine interface. These interfaces are used with the signal
of object record type as the argument. This way all of the specifics of the code remain in one place and therefore any
changes in the code are also propagated to everywhere the code is used. Because of this we can modify code inside the
abstracted interface and changes are propagated everywhere the code is being used.

42 Chapter 12. Create High Level Interfaces in VHDL

CHAPTER

THIRTEEN

USING LIBRARIES AND PACKAGES TO ABSTRACT VHDL

Libraries in VHDL play a special role. Together with the abstracted interfaces libraries allow us to abstract code even
further. With libraries we can change the insides of a record. This way we can change both the data and the interface
with which the data is being accessed.

We commonly add the same sources to multiple libraries when we are reusing code. This is because this allows us to
change things inside code like functions, procedures and records.

A few examples of this is for example using lookup tables. Here we have an example of a lookup table generator.

13.1 The specialty of use work.package

The mechanism in VHDL that allows us to do this is the work libray. Referencing package through work library allows
us to leave the library undefined. Thus we can use this as an interface for the insides of the records and functions. By
compiling a module together with a package which defines some functions and records, we can change the package
which we compile it with and thus change the implementation.

This allows us to create abstract interfaces that only define a behavior, like a function is called with an integer and when
it is ready it returns an integer. We do not need know if the module uses one clock cycle or multiple clock cyles.

43

hVHDL, Release 0.1

44 Chapter 13. Using libraries and packages to abstract VHDL

CHAPTER

FOURTEEN

AUTOMATIC CODE TIMING WITH HANDSHAKE INTERFACES

The way we allow any code to be allow to be changed is by using a handshake mechanism. This handshaking allows the
application code to remain insensitive towards the timing of the code. This is very important, as without this feature the
entire code is depending on there being no changes to the latencies and pipeline cycles. With this hanshaking we can
only use the design through the behavioral description and we can change any part of a code and it’s latency without it
affecting the users.

14.1 Backpressure instead of timing

The huge benefit of using the concept of backpressure, or handshake is that the code it self manages timing relation
between modules. This is absolutely mandatory to allow for the code to be changed later. The is_ready function also
makes writing tests exceptionally simple as we can easily combine together multiple modules with differing latencies.

14.2 Adding backpressure to sequential / blocking function

Adding a ready functionality to a sequential module is done by assinging the output to a signal at the same time as the
module is ready. For an easy example, we have a counter which flags a true for one clock cycle upon the count being
ready. Since this ready flag is added in the same clock edge as the counter is incremented, the module is ready returns
true at the same time as the counter is 0. Thus we can check for the module running by checking whether the counter
is zero and checking that it is done by checking the boolean.

14.3 Adding backpressure to pipelined function

The difference between a blocking function and pipelined function is that a pipelined function can be called every clock
cycle. The module takes some number of clock cycles for the result to be ready, but we can add a new instruction to
the pipeline every clock cycle.

The way we add a ready feature to this type of a module is by adding a pipeline that has equal length to the actual
module pipeline. The ready function then just checks for the last bit of the pipeline to be ‘1’. This way we can vary the
pipeline length and still have the application code function as intended.

45

hVHDL, Release 0.1

14.4 Adding ability to do backpressure to a IP module

It is very common for an IP module not to have a ready-request interface. However we can add this to the IP module
along with the inteface wrapper. A simple example of this is a RAM IP. This is pipelined function, that is we can
request a new register from ram every clock cycle.

46 Chapter 14. Automatic code timing with handshake interfaces

CHAPTER

FIFTEEN

REAL NUMBERS IN SYNTHESIZABLE VHDL

Real numbers can be used as a form of an abstract interface to either fixed or floating point arithmetic functions.

15.1 Real numbers as a form of abstract interfaces

Real numbers can be used as constants to any synthesizable module as long as they are not signals and they are used in
functions that return a synthesizable type.

47

hVHDL, Release 0.1

48 Chapter 15. Real numbers in synthesizable VHDL

CHAPTER

SIXTEEN

HIGH LEVEL CODING PATTERNS IN SYNTHESIZABLE VHDL

The main things that make up of a high level coding pattern is abstraction.

16.1 Creating callable object with records and subroutines

16.2 Creating objects from objects

16.3 Simple state machines

We should strive for making only linear state machines. Here we will show how to achieve arbitrarily complex begavior
with only linear state machines

Separate trigger and catch counters for timing insensitive design

49

hVHDL, Release 0.1

50 Chapter 16. High Level Coding Patterns in synthesizable VHDL

CHAPTER

SEVENTEEN

REUSING VHDL SOURCE CODE

The most important feature of high level coding patterns is the possibility for code reuse. This means that we can design
incrementally. By designing incrementally we can have many small modules that form more complex features. This
way we can use only a small part of a functionality.

17.1 Packages

In vhdl the way we share code is by putting it into packages. Packages can have type definitions for arrays and records
as well as functions and procedures and constants. Packages can also reference further packages, thus functions can be
built as part of other functions.

In hardware this means that we are chaining together logic without registers. This is a fantastic feature since we can
trivially pipeline a chain of functions by just reigistering the function outputs.

51

hVHDL, Release 0.1

52 Chapter 17. Reusing VHDL source code

CHAPTER

EIGHTEEN

SHARING HARDWARE RESOURCES

There are many different resources that need to be shared accross designs like memories, multiplier, communication
lines etc.

18.1 Sharing hw resouces inside a procedure

This is exceptionally simple to do. Due to the created interfaces, we can simply call the same request functionality
from a created object as many times as required.

18.2 Sharing hardware accross processes with a bus pattern

When we reuse hardware accross processes, we need to create a way to access the same resource from two places.
VHDL does not allow us to simply have two processes driving a signal, thus we need to create a way to do this. This
is called a bus pattern. The idea is very simple, just OR/AND together the input record signal of a port signal. We do
need to use three records, the two that are combined as the input and one for the output. However with this combined
bus, we now can access the data from two processes.

This simple way of creating buses allows us to access a shared resource from multiple processes thus gives the possibility
for accessing shared resouce

53

hVHDL, Release 0.1

54 Chapter 18. Sharing hardware resources

CHAPTER

NINETEEN

SOLVING DIFFERENTIAL EQUATIONS ON FPGA

FPGAs are really good for running dynamical system simulation in real time. Here we will explain how to do that.

19.1 Numerical integration

55

	What is hVHDL
	Usage
	Using the sources in your project

	Module Repository Structure
	example project of high level vhdl
	Example Project
	Noisy sine generation
	Filter interface
	Floating point filter implementation
	Fixed point filter implementation
	Filtering results
	Synthesis results

	Fixed point math
	Multiplier
	Divider
	Sine and Cosine
	synchronous coordinate transforms

	floating point math
	Adder/subtractor

	FPGA Memory
	FPGA interconnect
	Dynamic verification module
	Gigabit ethernet
	Uart
	Create High Level Interfaces in VHDL
	Records as abstract data types in VHDL
	Subroutines
	Using a simple interface

	Using libraries and packages to abstract VHDL
	The specialty of use work.package

	Automatic code timing with handshake interfaces
	Backpressure instead of timing
	Adding backpressure to sequential / blocking function
	Adding backpressure to pipelined function
	Adding ability to do backpressure to a IP module

	Real numbers in synthesizable VHDL
	Real numbers as a form of abstract interfaces

	High Level Coding Patterns in synthesizable VHDL
	Creating callable object with records and subroutines
	Creating objects from objects
	Simple state machines

	Reusing VHDL source code
	Packages

	Sharing hardware resources
	Sharing hw resouces inside a procedure
	Sharing hardware accross processes with a bus pattern

	Solving differential equations on FPGA
	Numerical integration

